import pandas as pd
# 加载历史选课数据
data = pd.read_csv('student_courses.csv')
print(data.head())
]]>
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# 数据预处理
X = data[['grade', 'major']]
y = data['course_id']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型
model = RandomForestClassifier()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(predictions)
]]>
from flask import Flask, jsonify
app = Flask(__name__)
@app.route('/recommend/
def recommend(student_id):
# 这里可以调用上面训练好的模型
recommendation = {'course': 'Math 401'}
return jsonify(recommendation)
if __name__ == '__main__':
app.run(debug=True)
]]>