def schedule_courses(courses, teachers, rooms):
import random
schedule = {}
for course in courses:
available_teachers = [t for t in teachers if t['availability']]
available_rooms = [r for r in rooms if r['availability']]
if not available_teachers or not available_rooms:
print("资源不足,无法安排课程")
return None
teacher = random.choice(available_teachers)
room = random.choice(available_rooms)
teacher['availability'] = False
room['availability'] = False
schedule[course] = {'teacher': teacher['name'], 'room': room['name']}
return schedule
courses = ['Math', 'Physics', 'Chemistry']
teachers = [{'name': 'Alice', 'availability': True}, {'name': 'Bob', 'availability': True}]
rooms = [{'name': 'Room1', 'availability': True}, {'name': 'Room2', 'availability': True}]
schedule = schedule_courses(courses, teachers, rooms)
print(schedule)
]]>
import pandas as pd
# 示例数据集
data = {
'student_id': [1, 2, 3],
'hours_studied': [10, 5, 20],
'test_score': [70, 50, 90]
}
df = pd.DataFrame(data)
# 简单线性回归模型
from sklearn.linear_model import LinearRegression
X = df[['hours_studied']]
y = df['test_score']
model = LinearRegression()
model.fit(X, y)
# 预测新学生的成绩
new_student_hours = [[30]]
predicted_score = model.predict(new_student_hours)
print(f"预计该学生得分: {predicted_score[0]}")
]]>