import pandas as pd
# 假设这是两个部门的数据集
df_traffic = pd.read_csv("traffic_data.csv")
df_health = pd.read_csv("health_data.csv")
# 数据清洗
df_traffic.dropna(inplace=True)
df_health.dropna(inplace=True)
# 数据合并
merged_df = pd.merge(df_traffic, df_health, on='date', how='inner')
print(merged_df.head())
import tensorflow as tf
from sklearn.model_selection import train_test_split
# 加载数据并预处理
X = merged_df[['hour', 'weekday']].values
y = merged_df['traffic_volume'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 构建模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],)),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='adam', loss='mse')
model.fit(X_train, y_train, epochs=100, validation_data=(X_test, y_test))