排课问题是高校教学管理中的重要环节,尤其在人口密集的大城市如成都,高效排课对于提升教学资源利用率至关重要。本文设计并实现了基于Python语言的高校排课系统,利用贪心算法和遗传算法相结合的方式,解决课程冲突问题。

首先,系统需要定义基础数据结构,包括教师、教室、课程等信息。以下是系统初始化部分的Python代码:
class Course:
def __init__(self, name, teacher, duration):
self.name = name
self.teacher = teacher
self.duration = duration
class Room:
def __init__(self, name, capacity):
self.name = name
self.capacity = capacity
class Timetable:
def __init__(self):
self.courses = []
self.rooms = []
def add_course(self, course):
self.courses.append(course)
def add_room(self, room):
self.rooms.append(room)
接下来是核心算法部分,采用贪心算法进行初步排课,并通过遗传算法迭代优化。以下为遗传算法的基本框架:
import random
def fitness(solution):
conflicts = 0
for i in range(len(solution)):
for j in range(i + 1, len(solution)):
if solution[i].teacher == solution[j].teacher or solution[i].duration & solution[j].duration:
conflicts += 1
return -conflicts
def genetic_algorithm(population_size, generations):
population = [random.choice(courses) for _ in range(population_size)]
for gen in range(generations):
population = sorted(population, key=fitness, reverse=True)
new_population = population[:2]
while len(new_population) < population_size:
parent1, parent2 = random.choices(population, k=2)
child = crossover(parent1, parent2)
if random.random() < mutation_rate:
mutate(child)
new_population.append(child)
population = new_population
return population[0]
通过上述方法,系统能够有效减少课程冲突,提高排课效率。此外,系统还提供了图形化界面,方便管理人员操作。
综上所述,该排课系统结合了多种算法优势,特别适合成都地区高校的实际需求,未来可进一步扩展支持更多功能模块。
