排课问题是高校教学管理中的重要环节,尤其在人口密集的大城市如成都,高效排课对于提升教学资源利用率至关重要。本文设计并实现了基于Python语言的高校排课系统,利用贪心算法和遗传算法相结合的方式,解决课程冲突问题。
首先,系统需要定义基础数据结构,包括教师、教室、课程等信息。以下是系统初始化部分的Python代码:
class Course: def __init__(self, name, teacher, duration): self.name = name self.teacher = teacher self.duration = duration class Room: def __init__(self, name, capacity): self.name = name self.capacity = capacity class Timetable: def __init__(self): self.courses = [] self.rooms = [] def add_course(self, course): self.courses.append(course) def add_room(self, room): self.rooms.append(room)
接下来是核心算法部分,采用贪心算法进行初步排课,并通过遗传算法迭代优化。以下为遗传算法的基本框架:
import random def fitness(solution): conflicts = 0 for i in range(len(solution)): for j in range(i + 1, len(solution)): if solution[i].teacher == solution[j].teacher or solution[i].duration & solution[j].duration: conflicts += 1 return -conflicts def genetic_algorithm(population_size, generations): population = [random.choice(courses) for _ in range(population_size)] for gen in range(generations): population = sorted(population, key=fitness, reverse=True) new_population = population[:2] while len(new_population) < population_size: parent1, parent2 = random.choices(population, k=2) child = crossover(parent1, parent2) if random.random() < mutation_rate: mutate(child) new_population.append(child) population = new_population return population[0]
通过上述方法,系统能够有效减少课程冲突,提高排课效率。此外,系统还提供了图形化界面,方便管理人员操作。
综上所述,该排课系统结合了多种算法优势,特别适合成都地区高校的实际需求,未来可进一步扩展支持更多功能模块。